Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration.

نویسندگان

  • Xing Guo
  • Marie-Helene Disatnik
  • Marie Monbureau
  • Mehrdad Shamloo
  • Daria Mochly-Rosen
  • Xin Qi
چکیده

Huntington's disease (HD) is the result of expression of a mutated Huntingtin protein (mtHtt), and is associated with a variety of cellular dysfunctions including excessive mitochondrial fission. Here, we tested whether inhibition of excessive mitochondrial fission prevents mtHtt-induced pathology. We developed a selective inhibitor (P110-TAT) of the mitochondrial fission protein dynamin-related protein 1 (DRP1). We found that P110-TAT inhibited mtHtt-induced excessive mitochondrial fragmentation, improved mitochondrial function, and increased cell viability in HD cell culture models. P110-TAT treatment of fibroblasts from patients with HD and patients with HD with iPS cell-derived neurons reduced mitochondrial fragmentation and corrected mitochondrial dysfunction. P110-TAT treatment also reduced the extent of neurite shortening and cell death in iPS cell-derived neurons in patients with HD. Moreover, treatment of HD transgenic mice with P110-TAT reduced mitochondrial dysfunction, motor deficits, neuropathology, and mortality. We found that p53, a stress gene involved in HD pathogenesis, binds to DRP1 and mediates DRP1-induced mitochondrial and neuronal damage. Furthermore, P110-TAT treatment suppressed mtHtt-induced association of p53 with mitochondria in multiple HD models. These data indicate that inhibition of DRP1-dependent excessive mitochondrial fission with a P110-TAT-like inhibitor may prevent or slow the progression of HD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons.

3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase that has been used to explore the primary mechanisms of cell death associated with mitochondrial dysfunction and neurodegeneration in Huntington's disease. In this study we investigated the ability of brain-derived neurotrophic factor (BDNF) to suppress mitochondrial-dependent cell death induced by 3-NP in prim...

متن کامل

Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely...

متن کامل

Effect of adenosine receptor agonists on neurodegenerative and convulsive activity of mitochondrial toxin, 3-nitropropionic acid.

3-Nitropropionic acid (3-NPA) is a mitochondrial toxin inhibiting the activity of succinate dehydrogenase. Its experimental application in rodents causes lesions of the striatum resembling the course of Huntington's disease in humans. Recently, we have shown that 3-NPA is also a potent convulsive and proconvulsive agent. This study investigated the effects of adenosine receptor agonists on neur...

متن کامل

Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics

Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe system...

متن کامل

D-β-Hydroxybutyrate Is Protective in Mouse Models of Huntington's Disease

Abnormalities in mitochondrial function and epigenetic regulation are thought to be instrumental in Huntington's disease (HD), a fatal genetic disorder caused by an expanded polyglutamine track in the protein huntingtin. Given the lack of effective therapies for HD, we sought to assess the neuroprotective properties of the mitochondrial energizing ketone body, D-β-hydroxybutyrate (DβHB), in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 12  شماره 

صفحات  -

تاریخ انتشار 2013